Digital Chip Fabrication

Team: sdmay23-28

Client & Advisor: Dr. Henry Duwe 12-07-22

Project Overview

Problem description & location

At ISU, it is rare to find undergraduate students in computer or electrical engineering that have created, fabricated, and brought up a digital design.

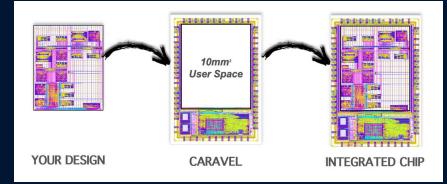
Client's Goals

Dr. Duwe is looking to create a co-curricular at ISU for students interested in this area

Our Project

Silicon-prove a digital spiking neural network Learn Efabless tools and flow Develop documentation to help others learn the required software tools

ASIC Fabrication


Who

Efabless + Google + Skywater = Open MPW Shuttles

What

ASIC Fabrication at no cost to developers

Why Open Source ASICs

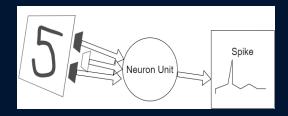
Introduction

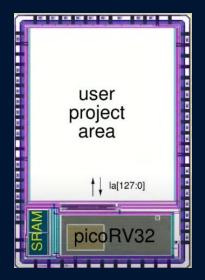
Users Requirements Constraints Standards

Silicon Proven Design Software + Hardware Documentation Communication

Examples Resources Handoff Open Source IP Documentation Functionality

Project Description


Hardware Neuron to implement a spiking neural network (SNN) and surrounding infrastructure to identify digits from the MNIST data set.


Reason for project development

So that it might be used as an example project for a future chip design co-curricular at ISU.

Tasks from Client

Functional digital chip design Bring-up plan for our chip Documentation of software tools used

Project Requirements

1.Design & Functionality Requirements

- •Our chip design must fit within a 10 square millimeter area
- Logic represents at least one neuron in a Leaky Integrate and Fire Spiking Neural Network
- •Design uses a digital configuration
- oDesign must successfully pass the Open MPW precheck tool

2. Documentation Requirements

- Repository should have a README file
- •Detailed bring up plan for our chip design
- •Write up a tutorial document to explain how to use all of the necessary Efabless software tools

Project Requirements (continued)

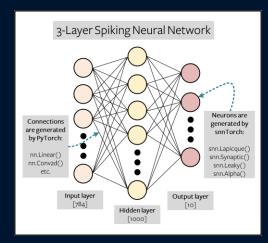
3. Environment Requirements

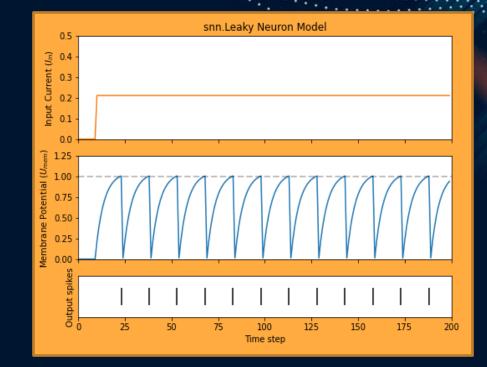
•The project must be posted on a git-compatible repo and be publicly accessible and contain the following items:

 A makefile with targets to compress/uncompress, and clean the project

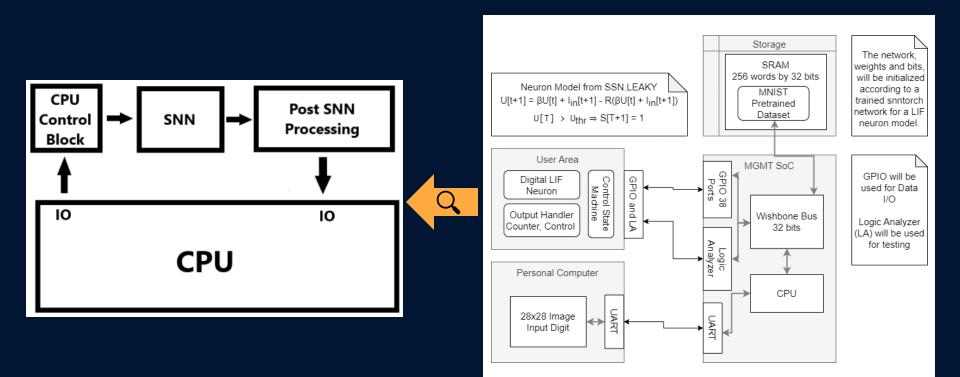
 LICENSE files for the top-level project as well as each of the thirdparty components used

• Project is designed utilizing open-source tools (constraint)


 Project should pass checks provided in caravel harness GitHub repository before submitting to Efabless (constraint) Design


Context Exploration Proposal Considerations

SNN Model

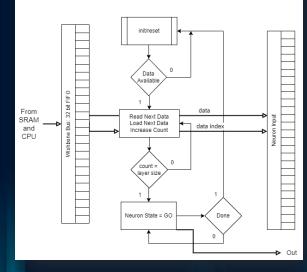

Neuron Model Leaky Integrate and Fire

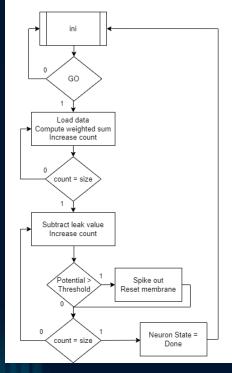
Network Model snnTorch Provides a pre-trained network

High Level Sketch

Block Processes

SNN Unit

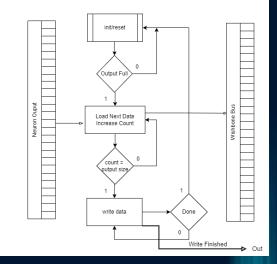

Inputs: Neuron State, Data (weights, potentials), size


Outputs: Neuron Data (spikes, potentials), Output size, Neuron State

CPU Control

Inputs: Data Available, Data, Done

Outputs: Data Index, Data, Neuron State



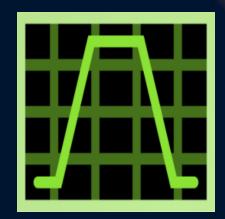
Post Process Control

Inputs: Neuron State, Neuron Output Data, Output Size

Outputs: Write Data, Write Done

Testing Methods and Tools

Unit – Individual components (integrator)


• Testbenches and waveforms

Integration – Grouped components (control unit, neuron)

• Testbenches and waveforms

System - Full user and management area

- Testbenches and waveforms
- Prechecks
- Logic analyzer

GTKWave Waveform analysis

Testing Methods and Tools (cont.)

Regression

- Version control (GitLab)
- Continuous Integration

Acceptance

- Prechecks
- Open MPW approval

Additional Testing

 Feedback on documentation The-OpenROAD-Project/OpenLane Public

RTL to GDSI

Status	Pipeline	Triggerer	Stages
© passed © 00:11:58 ≅ 1 day ago	Update.gitlab-ci.ymlfile #14269 १° main ∻ edbcb5fa ∰ latest	۲	~ >
⊘ passed © 00:00:23 ➡ 1 day ago	updated readme with more install steps f #14268	۲	
⊗ failed ≅ 2 weeks ago	lif neuron with simple test #13997 \$ ⁹ snn-neuron ∽ a4ecee24 ∎ latest	۲	× »
skipped » Skipped	repository set up for neuron #13995 ♀ snn-neuron ∻ a6c9c20f ③	۲	

<u>GitLab</u> Source Control Continuous Integration

1 [STEP_1]

[INFO]: Running Synthesis... [STEP 2]

[INFO]: Running Single-Corner Static Timing A [INFO]: Creating a netlist with power/ground

6 [STEP 3]

7 [INFO]: Running Initial Floorplanning...

8 [INFO]: Extracting core dimensions...

9 [INFO]: Set CORE_WIDTH to 2908.58, CORE_HEIGH 10 [STEP 4]

- 11 [INFO]: Running IO Placement...
- 12 [STEP 5]

13 [INFO]: Performing Manual Macro Placement...

- 14 [WARNING]: Skipping Tap/Decap Insertion.
- 15 [INFO]: Power planning with power {vccd1 vccd 16 [STEP 6]
- 17 [INFO]: Generating PDN...
- 18 [STEP 7]

19 [INFO]: Performing Random Global Placement...

20 [INFO]: Skipping Placement Resizer Design Opt 21 [STEP 8]

22 [INFO]: Running Detailed Placement...

23 [INF0]: Skipping Placement Resizer Timing Opt 24 [INF0]: Routing...

> <u>MPW Precheck</u> Synthesis Placement Layout violation

Experience with Testing and Tools

What we did:

- Experimented with caravel example project
- Hardened adder from sddec22-17
- Started new simple project for XOR
- Developed simple but robust testbenches
- Hardened our own XOR project
- Analyzed testbench results (GTKWave)
- Entire process again for neuron

What we learned:

- Caravel harness
- Testbenches
- Waveform analysis (GTKWave)
- Hardening (MPW precheck, OpenLane)

<pre>ime</pre>	100 us
a_input[31:0] 00000000 a_write[31:0] 00000000	
a_write[31:0]	
prod[63:0]	
	000000000FFC0
rdata[31:0] 00000000	
ready	
reset	
valid	
wdata[31:0]	xxxxxxx
wstrb[3:0]	<u>je</u>
vmem[31:0]	

Implementation

Spring Semester 2023

Project Plan

• Broken Into Phases

Background
Design
Implementation
Documentation

•Adjustments as we proceed (AGILE) • Well-scoped design allows flexibility • Number of neuron modules

Task Decomposition	
Task	Goal Date
Phase 1 Background Developement	11/7/2022
Sample Process	10/24/2022
Completer User_Adder Exmple	
Every Member Have Design Environment Set-Up	
Make updates and iterations to sample	10/31/2022
Do something outside of the sample with the adder	
Possibly do layout visualization	
Learn about Spiking Nueral Networks	10/24/2022
Deterime what our design will do	
Know theorehtical Input and Output	
Pen and Paper Logic SNN	11/7/2022
Create Initial Design Sketch	
Create Design Flowchart	
Phase 2 Design	12/12/2022
Determine High-Level Design	11/14/2022
Divide into Memory/Logic Parts	
Deterime ideas for how to test each piece	
Part by Part Block Design	11/28/2022
Create RTL for wishbone bus	
Create Verilog (x number of pieces)	
Test Blocks	
Finalize Tests	12/5/2022
Test and Reiterate	
(Bring-Up) Create Full RTL for design	12/12/2022
Generate Netlist	
Phase 3 Implementation	2/20/2023
Place in harness	1/23/2023
Test & Validate Entire Chip	1/30/2023
Harden Design	2/6/2023
Pass all Prechecks	2/13/2023
Submit to Fab (Hard Deadline: Date yet to release)	2/17/2023
Phase 4 Functional Finalization	5/1/2023
Application Software	3/6/2023
Documentation	5/1/2023

Project Schedule

Digital ASIC Fabrition		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY
		3 10 17 24 31	7 14 21 28	5 12 19	16 23 30	6 13 20 27	6 13 20 27	3 10 17 24	1 7
TASK		7 8 9 10 11	12 13 14	15 16	1 2 3	4 5 6 7	8 9 10	11 12 13 14	15 16
Phase 1 Backround Developement									
Sample Process	Done								
Make updates and iterations to sample	Done								
Learn about Spiking Nueral Networks	Done								
Pen and Paper Logic SNN	In Progress								
Phase 2 Design									
Determine High-Level Design	In Progress								
Part by Part Block Design	In Progress								
Test Blocks									
(Bring-Up) Create Full RTL for design									
Phase 3 Implementation									
Place in harness									
Test & Validate Entire Chip									
Harden Design									
Pass all Prechecks									
Submit to Fab (Hard Deadline: Date yet to release)									
Phase 4 Functional Finalization									
Application Software									
Documentation	In Progress								

Project Status

Summary:

Environment Usage, Tool Learning, Simple Designs and Iterations, Defined design idea and components (SNN, snntorch, LIF, MNIST, etc...)

Ongoing SRAM/Storage solution investigation Our Plan:

- Use slack community once we have specs
- 2KB macro available

Neuron size determining area investigation Our Plan:

- Start with one Neuron
 - Use tools to determine area used
 - See how many to fit
- Other ways use area with data storage

Next Steps

- 1. Continue implementation of design/tests in RTL
- 2. Continue documentation for chip design curriculum and caravel
- 3. Our goal shuttle, MPW-9, will be ~3 months following the MPW-8 submission date of Dec 31st. Exact date not announced.
 - Bring-up process hand off
- 4. Prove design (Hardware and Software interaction) in simulation

Thank You

Questions

Supplementary Slides

Definitions

ASIC

Application Specific Integrated Circuit

MPW

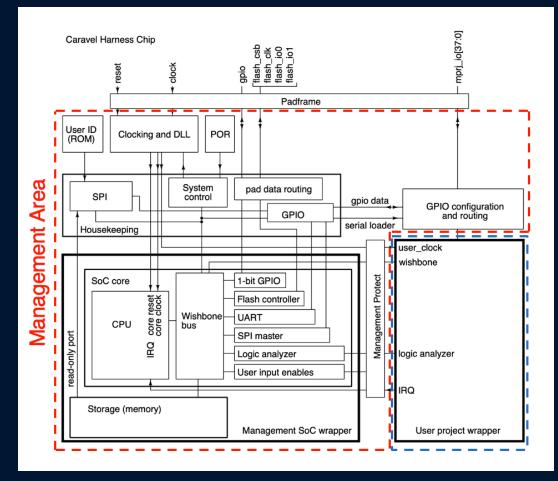
Multi Project Wafer

Shuttle Run

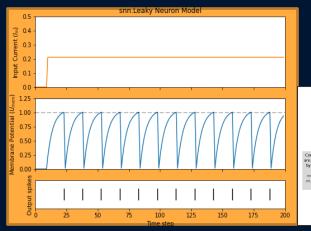
Round of Efabless wafer fabrication

Harness

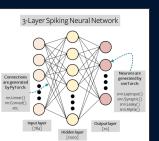
Carvel provided infrastructure

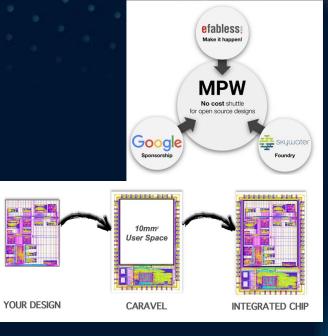

MNIST Database

Database of handwritten digits, used for image processing


ASIC Flow

Process steps from design specification to design tape-out


Harness Diagram



References

https://snntorch.readthedocs.io/en/latest/tutorials /tutorial_3.html

https://efabless.com/open_shuttle_program

References

<u>The efabless Caravel project---Chip design for</u> the software-oriented | COSCUP_x RubyConfTW 2021 - YouTube</u>

https://github.com/gtkw ave/gtkw ave/blob/master/ gtkw ave3/share/icons/gtkw ave_256x256x32.png